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Abstract

The existence, dispersion properties, velocities and energy of waves, localized near the stress-free edge of
thin anisotropic plates are investigated. As shown, some qualitatively new effects occur: the velocity of
Rayleigh type waves can be not minimal between bending waves; wave decay takes place with oscillations;
under some type of anisotropy, power flow can equal zero and can change the sign. The well-known
Leontovich–Lighthill theorem does not hold any longer, despite the same sign of the phase and group
velocities the power flow can have the same or opposite sign.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bending waves of Rayleigh type (BWRT) were treated first by Konenkov (1960) for
isotropic media [1], where the existence of waves were proven together with the analysis of
their properties. Since this paper, such waves have been investigated by many authors (see, for
example, Refs. [2–6]). But in contrast to the usual in-plane Rayleigh waves [7] which enable some
non-destructive testing, seismic monitoring, etc. interest was not very high due to the relatively
small decay factor (of the order n4; where n is the Poisson ratio) for isotropic media. So, the main
interest was focused on a mathematical formalism. Further progress in this field concerned two
directions. The first devoted to the waves at the ‘‘interface’’ (edge-by-edge contact between plates
[8,9]), which represent an analogue of the Stonely waves at bending. Second dealt with the edge
waves in plates, immersed in fluid, of interest for the applications in hydroelasticity and mechanics
of ice [10–12]. Some papers recorded results which overlapped (see, e.g., numerous comments in
Ref. [13]) and have been rediscovered many times.
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However, with the wide spread of advanced composite materials, many of which are highly
anisotropic, certain theoretical and practical questions are pertinent:

1. Do BWRT exist in media with general anisotropy?
2. If they exist, what are their properties (energy, factor of the exponential decay, etc.)?
3. What is the influence of layup in laminates on the wave properties (i.e., symmetrical layup or

asymmetrical layup with coupled bending and stretching [14])?

Despite some interest, shown in Refs. [5,6] for the orthotropic materials with simplest
orientation, the detailed investigation on the subject has not been published. In the present paper
two of the mentioned questions are considered and answered.

2. Physical and mathematical statement of problem

Consider a thin laminate with symmetrical layup, made of perfectly joined anisotropic plies.
The total thickness of laminate is 2h and Cartesian co-ordinates x1;x2; and x3 ¼ z are normalized
over h: The laminate geometry is shown in Fig. 1. The internal stress–strain state (SSS) of the
laminate is supposed to be long-wave, i.e., it satisfies the classical relations of the 2-D anisotropic
plate bending theory [15]. In what follows the dimensionless quantities are considered, namely the
elastic moduli are normalized over the maximal Young’s modulus of the plies, and the mass
densities are normalized in a similar manner over the maximal mass density of the plies.
The main relations for the normal deflection w; slopes ya; longitudinal displacements ua; torques

Mab; and transversal forces Qaz are

ya ¼ �@aw; ua ¼ zya ða ¼ 1; 2Þ;

M11 ¼ �ðd3
11@

2
1 þ d3

16@1@2 þ d3
12@

2
2Þw; M12 ¼ �ðd3

16@
2
1 þ d3

66@1@2 þ d3
62@

2
2Þw;

Qaz ¼ @1M1a þ @2M2a ð122Þ;

where D ¼ d3
pq

��� ������ ��� is a matrix of bending stiffness. The normal deflection also satisfies the equation
of motion

@aQaz ¼ r@2t w;

where t is time and r is dimensionless integral mass density.

Fig. 1. Laminate and layup (left) and BWRT in the co-ordinate half-plane (right).
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The harmonic oscillations of a semi-infinite laminate which occupies a region are investigated
which occupies a region O : x2X0;�Nox1oN in its plane. The edge of the laminate x2 ¼ 0 is
assumed to be free of external loading.

Remark 1. In this paper the term stress-free edge is used in accordance with the accepted concept
for thin plates, whereby the main SSS is subdivided into the internal SSS and the boundary layer
(BL), not considered here. So, the internal SSS is described by the classical Kirchhoff’s model of
thin plate with respective integral boundary conditions, and all corrections are included in BL.
Thus, Kirchhoff’s theory is valid at the distance of a few h near the edge.

Then the normal bending w ¼ w�ðx1;x2Þeiot; normalized over h; satisfies the equation of
oscillation with frequency o; by

fL3ð@1; @2Þ � ro2gw� ¼ 0; ð2:1Þ

L3ð@1; @2Þ 	 d3
11@

4
1 þ 4d3

16@
3
1@2 þ 2ðd3

12 þ 2d3
66Þ@

2
1@

2
2 þ 4d3

26@1@
3
2 þ d3

22@
4
2:

At the edge, the boundary conditions are satisfied by

Mð@1; @2Þw� ¼ 0; F ð@1; @2Þw� ¼ 0; ð2:2Þ

M

F

" #
¼ �

d3
12@

2
1 þ d3

26@1@2 þ d3
22@

2
2

2d3
16@

3
1 þ ðd3

12 þ 4d3
66Þ@

2
1@2 þ 4d3

26@1@
2
2 þ d3

22@
3
2

" #
;

where M and F are operators responsible for the normal moment M22 and for the transversal
Kirchhoff’s shear force P2z ¼ 2@1M12 þ @2M22:
In investigating the existence of solutions propagating along the edge when distant from the

edge inside the laminate, i.e., the desired BWRT

w� ¼ Aeiðk1x1þk2x2Þ; A ¼ Const; Im k2o0:

Since x2X0 the latter inequality provides the exponential decay along the half-axis x2X0 (see
Fig. 1).
Let

dpq ¼
d3

pq

d
; s4 ¼

ro2

dk4
1

; x ¼
k2

k1
;

where d is a particular bending stiffness, chosen for normalization (for example, a maximal one).
For the definitiveness, set k1 > 0: Substitution of w� into Eq. (2.1) yields the characteristic
equation with constant coefficients for the variable x

Lð1; xÞ � s4 	 d11 þ 4d16xþ 2ðd12 þ 2d66Þx
2 þ 4d26x

3 þ d22x
4 � s4 ¼ 0: ð2:3Þ

When using the normalized coefficients dpq for the operator symbol from Eq. (2.1) another
notation Lð1; xÞ is introduced. The roots of Eq. (2.3) describe all types of monochromatic waves
and only conditions (2.2) should be satisfied additionally. The following propositions hold.

Proposition 1. When the twist coupling stiffnesses are absent ðd16 ¼ d26 ¼ 0Þ; Eq. (2.3) can have
pure imaginary roots x : Rex ¼ 0; in the contrary case, roots are real or complex.
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Under presence of the twist coupling stiffnesses Eq. (2.3) immediately leads to a contradiction
since for the pure imaginary x the real and imaginary part of the left side must equal zero.

Proposition 2. All complex roots of Eq. (2.3) are conjugated; two pairs of complex conjugated roots

(and respective by the BWRT) can exist only at

sos�; s�4 ¼ inf
xAR

Lð1; xÞ:

In fact, the characteristic polynomial of the fourth order Lð1; xÞ is positively determined for real
values x [14]. Since this polynomial is a smooth function, Eq. (2.3) at s ¼ s� has at least one real
root of multiplicity 2. At s > s� the number of real roots is not less than 2. Thus, at sXs� not more
than one pair of complex conjugated roots exists, and this is insufficient to satisfy two boundary
conditions (2.2) with simultaneous exponential decay along the axis x2:

Proposition 3. The BWRT phase velocity VR ¼ �o=k1 has the upper bound

VRj joV�; V� ¼ s�2k1

ffiffiffiffiffiffiffiffi
d=r

p
:

This is a simple physical corollary of Proposition 2.

Remark 2. It is noticeable that the natural direction of propagation for the chosen wave is against
the direction of axis x1:

The desired pair of complex roots is denoted as x1;2ðIm x1;2 > 0Þ: Boundary conditions (2.2)
acquire the form

detDðsÞ ¼ 0; ð2:4Þ

DðsÞ ¼
d12 þ 2d26x1 þ d22x

2
1

2d16 þ ðd12 þ 4d66Þx1 þ 4d26x
2
1 þ d22x

3
1

"
d12 þ 2d26x2 þ d22x

2
2

2d16 þ ðd12 þ 4d66Þx2 þ 4d26x
2
2 þ d22x

3
2

#
;

A2

A1
¼ �

d12 þ 2d26x1 þ d22x
2
1

d12 þ 2d26x2 þ d22x
2
2

; w�ðx1; x2Þ ¼ fA1e
ix1k1x2 þ A2e

ix2k1x2geik1x1 ð2:5Þ

Finally, the question of the existence of BWRT is reduced to the investigation of the roots s of
Eq. (2.4) at the branches x1ðsÞ; x2ðsÞ:

3. Case of orthotropic media

In the particular case of an orthotropic medium, whose principal axes coincide with the axes
x1;x2; the situation is essentially simplified. Then the twist coupling stiffnesses d16 ¼ d26 ¼ 0 and
the characteristic Eqs. (2.3) and (2.4) have only pure imaginary roots x1ðsÞ; x2ðsÞ: On choosing the
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coefficient d ¼ d22; from Eqs. (2.3) and (2.4) one obtains the relations

x1;2 ¼ i C8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D þ s4

pn o1=2
; D ¼ C2 �

d11

d22
;

C ¼ d12 þ
2d66

d22
; E ¼

2d66

d22
; ð3:1Þ

f ðsÞ 	
E þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D þ s4

p
E �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D þ s4

p
( )2

C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D þ s4

p
C þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D þ s4

p
( )1=2

¼ 1 ðf ðsÞ ¼ 13detDðsÞ ¼ 0Þ: ð3:2Þ

At s4A E2 � D;C2 � D

 �

the function f ðsÞ varies from 0 to þN; i.e., the real root s of Eq. (3.2)
exists and equals

s ¼ �D þ CE 2� 3a2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a2 �

1

2

� 2

þ
1

2

s0
@

1
A

8<
:

9=
;

1=4

; a2 ¼
E

C
; ð3:3Þ

where the positive definitiveness of the radicals follows from the positive definitiveness of the
tensor of elastic constants. The magnitude ratio (2.5) is evidently positive. The physical quantities
are given as the real part of the solution Refw�ðx1; x2Þeiotg; and for the slopes y1; y2 and
longitudinal displacements u1; u2 leading to

ya ¼ �@aRefw�ðx1; x2Þeiotg ða ¼ 1; 2Þ;

u1 ¼ �z Re ik1A1 e�k1 x1j jx2 þ
A2

A1
e�k1 x2j jx2

� �
eiðotþk1x1Þ

� �
;

u2 ¼ z Re k1A1 x1j je�k1 x1j jx2 þ x2j j
A2

A1
e�k1 x2j jx2

� �
eiðotþk1x1Þ

� �
:

Thus, for a real magnitude A1 the displacements u1; u2 (and the slopes y1; y2) are harmonic
functions with the phase difference �p=2: During a full period the trajectory of an arbitrarily
chosen point ðx1; x2Þ is an ellipse, whose direction is counterclockwise and the semi-axes decay
exponentially when at distance from the edge.
In the particular case of an isotropic (and of a transversely isotropic) medium equality (3.3)

leads to the same relation, as found by Konenkov [1]

s ¼ fð1� nÞð3n� 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nþ 2n2

p
Þg1=4;

where n is the Poisson ratio.
It is also interesting to examine the qualitative behavior of the phase velocity VR and its

ratio over the velocity VB of the ordinary bending wave. Consider the wave vector k with the
angle of inclination j with respect to the axis x1: After replacing @1 and @2 in Eq. (2.1) by
kj j cos j and kj j sin j; respectively, the velocities VB; VR and their ratio rðjÞ are given by the
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formulas

VB 	
o
kj j

¼
o2L3ðcosj; sin jÞ

r

� �1=4
; VR ¼ �

o
k1

¼ �s
o2d3

22

r

� �1=4
;

rðjÞ ¼
jVRj
VB

¼ s
d3
22

L3ðcosj; sin jÞ

� �1=4

: ð3:4Þ

In the case of isotropic materials the ratio rðjÞ is always less than unit [1].
Another important characteristic is the value of the averaged power flow I across the section of

a plate, normal to the direction of propagation x1: As usual it is introduced using the integral of
the product of stresses spq and speeds u�

a ; w�; averaged over the period of oscillations [16]. Due to
the definition, for the complex form of physical quantities

I ¼ �
o
2p

Z 2p=o

0

dt

Z þN

0

dx2

Z h

�h

Re u�1 Re s11 þRe u�
2 Re s12 þRe w� Re s1z

� �
dz;

where the dot denotes the derivative with respect to time. After integrating over the thickness I it
acquires the final form

I ¼ �
o
2p

Z 2p=o

0

dt

Z þN

0

fRe y�1 Re M11 þRe y�2 Re M12 þRe w� Re Q1zg dx2: ð3:5Þ

4. Numerical example

For numerical illustration two types of orthotropic materials have been chosen: material T300/
epoxy (T) with Young’s moduli E1 ¼ 130 000;E2 ¼ 9750; shear modulus G12 ¼ 6000 N=mm2; the
Poisson ratio n12 ¼ 0:27 and mass density r ¼ 1:58 g=cm3; material E-glass (E) with constants
r ¼ 2; E1 ¼ 45 000;E2 ¼ 13 000;G12 ¼ 4400; n12 ¼ 0:29: The principal axes coincide with the co-
ordinate axes (T/0) or are rotated about the angle p=2 (T/90); the thickness is 2h ¼ 1 mm;
coefficient d ¼ maxðd11; d22Þ:
The characteristic values s and the normalized power flow of BWRT are

sE0:9983 ðT=0Þ; 0:7323 ðT=90Þ; 0:9920 ðE=0Þ; 0:5234 ðE=90Þ;

minðIm x1; Im x2ÞE0:01743 ðT=0Þ; 0:004483 ðT=90Þ; 0:04103 ðE=0Þ; 0:02254 ðE=90Þ;

I

od k1A1j j2
E� 1:341ðE=0Þ;�0:3715 ðT=90Þ;�1:734 ðE=0Þ;�0:9601 ðE=90Þ:

The plots of the resultant velocity ratio rðjÞ are shown in Fig. 2. As seen for different materials
rðjÞ can be smaller or greater than unit. Thus, for the standard orientation of orthotropic
materials one concludes that

1. the BWRT exists;
2. the decay factor minðIm x1; Im x2Þ can be higher than for an isotropic medium, where this value

is no more than 10�2;
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3. in contrast to the case of isotropic medium [1] the phase velocity of BWRT is no longer minimal
between all possible bending waves (see Fig. 2).

5. General anisotropy

In the case of general anisotropy ðd16; d26a0Þ the analytical formulas for the roots x1ðsÞ; x2ðsÞ
and characteristic value s are no longer available and to be found numerically. The procedure is to
set the parameter s and from Eq. (2.3) two branches x1ðsÞ; x2ðsÞ are calculated and substituted into
Eq. (2.4) (real and imaginary part of detDðsÞ). The results are illustrated for materials (T) and (E),
whose principal axes x0

1; x
0
2 are obtained by a rotation of the axes x1; x2 about the angle

0ocop=2: Plots of the functions sðcÞ are shown in Fig. 3. The respective branches x1ðcÞ; x2ðcÞ
are presented in Figs. 4 and 5. The magnitude ratio (2.5) is shown in Fig. 6 and confirms that none
of components can be neglected and the decay factor is defined by Re x1ðcÞ: This decay factor is
shown in Figs. 4 and 5 by solid curves 1. As seen for (T) and (E) materials the exponential decay

ϕ

1

2

3

4

10

1

2

Fig. 2. rðjÞ plots in polar co-ordinates for materials T/0 (curve 1), T/90 (2), E/0 (3) and E/90 (4).

0.5
0.5

0

1

ψ/π

s (ψ)

E

T

Fig. 3. Curves of frequency parameter for T (—) and E (–  –  ) materials.
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0

-1

-2

0.5

ψ/π

Reξ

Imξ−

1

2

Fig. 5. Real (—) and imaginary (– – –) solutions for roots x1ðcÞ; x2ðcÞ for material E.

0.5
0

1

-1

-2

ψ/π

Reξ

Imξ−

1

2

Fig. 4. Real (—) and imaginary (– – –) solutions for roots x1ðcÞ; x2ðcÞ for T-materials.

0
0.5

0.1

 ψ/π

1

2

12Re AA

12Im AA

Fig. 6. The real (—) and imaginary (– – –) magnitude ratio A2=A1 as a function of c for T-materials (index 1) and E

(index 2).
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factor can acquire the values of the order 10�1 (at cE0:11pðTÞ and cE0:162pðEÞ; respectively),
which are ten times more that for the isotropic case [1].

6. Average power flow

The behavior of the power flow IðcÞ is of special interest and plots of this normalized function
are shown in Fig. 7. For k1 > 0 the power flow seems to be negative. However, for both materials
there exists a critical value c� ¼ 0:1249pðTÞ; 0:1767pðEÞ of the orientation angle for which the
desired wave becomes steady, and then ðc > c�Þ it changes the direction of energy transfer. At the
next critical angle c�� ¼ 0:1848pðTÞ; 0:2268pðEÞ the wave becomes steady again and under c >
c�� the sign of the power flow is the same as the initial one. This fact is new and observed only for
a medium with general anisotropy ðd16; d26a0Þ: For isotropic media and for orthotropic media
with standard orientation such a fact cannot be realized in principle.
To clarify the effect consider the generalized acoustical impedances Im and Ip introduced as

follows:

I�m ¼
M11

y�1
¼ �

Im

VR

; I�p ¼
P1z

w� ¼ �
k2
1Ip

VR

; I ¼ Im þ Ip;

y1 ¼ �ik1w; y�1 ¼ ok1w; w� ¼ iow:

After integration by parts the right side of Eq. (3.5) leads to the formulae

I ¼ I0 þRefRe w� Re M12gjx2¼0; ð6:1Þ

I0 	 �
o
2p

Z 2p=o

0

dt

Z þN

0

fRe y�1 Re M11 þRe w� Re P1zg dx2

¼
o2k2

1

2VR

Z þN

0

wj j2ReðIm þ IpÞ dx2:

2
11 AkdωJ

E

T

5.0
 ψ/π

0

-1 

1

Fig. 7. Normalized averaged power flow and acoustic impedances ReðIm þ IpÞ at x2 ¼ 0 (the latter are positive in the

origin) for T-materials (—) and E-materials (–  –  ).
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Remark 3. The way to introduce the generalized impedances is not unique here. The chosen style
deals with such quantities as bending moment and Kirchhoff’s force, which directly participate in
the formulation of boundary conditions. It also allows one to calculate to the magnitudes of the
normal deflection for I0:

The main contribution into power flow I gives the variable I0:Due to the simplest analogue for
the harmonic oscillator with dissipation energy, subjected to the action of any external force F ;
consider a point of mass m on the spring with stiffness c under linear viscous friction with
coefficient b: Its generalized acoustical impedance is

I� 	
F

y�
¼

my�� þ by� þ cy

y� ¼ i mo�
c

o

 !
þ b ð6:2Þ

and one can expect a positive value of Re I� and the possible change of the sign of the imaginary
part. So, for BWRT the most natural conclusion would be the constant sign of ReðIm þ IpÞ and
possible sign changing of ImðIm þ IpÞ:
Plots of the real and of the imaginary parts of the generalized impedances Im; Ip; Im þ Ip are

shown in Figs. 8–10 for three values of the angle c: outside the interval c�;c��
h i

(Figs. 8 and 10)
and inside this interval (Fig. 9). As seen, outside the interval c�;c��

h i
the analogue with Eq. (6.2)

11xk

108642
0

-1 

1

Re

Im
mI

pI

mp II +

25
ψ =  π

Fig. 8. Normalized impedances for coc�ðTÞ (j ¼ p=25). Key: —, Ip þ Im;– – –, Ip; –  –, Im:

108642
0

-2

11xk

Re

Im

mI

pI

mp II +

200

27 πψ = 

Fig. 9. Normalized impedances for c�ococ�� (c ¼ 27p=200). Key as for Fig. 8.
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holds, but for the intermediate value of c one can single out an active zone near the edge with
opposite direction of energy flow. This is a physical reason of the sign changing of the integral I:
It should be also noticed, that zeros of I and of ReðIm þ IpÞ do not coincide and their shifting is
explained by the presence of additional terms in Eq. (6.1).
Such a situation occurs for any intermediate value of the angle c: In particular, on considering

ReðIm þ IpÞ in the point x2 ¼ 0 under different c (see Fig. 7, this function is always positive at the
origin) it is seen that this function changes its sign at other critical values (e.g., c0E0:062p; c0oc�

and c00E0:241p; c00 > c�� for material (T)). Inside the interval ½c0;c00� the value of ReðIm þ IpÞ
remains negative and determines the sign changing of the total power flow.
The overall situation looks as follows: at small c the density of power flow (sub-integral

function in Eq. (3.5)) at x2 ¼ 0 is positive, then at a certain value of angle it equals zero and
remains negative for larger c: Obviously, for x2b1 the power flow density is always positive, so
an intermediate zone, where the power flow density is negative, exists near the edge. Since the total
power flow is obtained by integration for all x2; its sign will change when this zone is large enough
to give the leading contribution into I: Hence, such zone with a reverse power flow appears at
coc� and disappears at c > c��; because for c near p=2 the plate behavior is qualitatively similar
to one at small c:

7. Leontovich–Lighthill theorem

The results obtained confirm the importance of the adequate formulation of the energy
radiation principle for the problems of dynamic bending and do not contradict classical energy
relationships. Recalling the known formulation of the energy law in differential form

@te þ div p ¼ 0; ð7:1Þ

where e is the total energy density and p ¼ ðp1; p2Þ; pa ¼ Re y�b Re Mab þRe w� Re Qaz are
components of the Umov–Pointing vector [16]. On varying the frequency and the wave number

o ¼ o0 þ ido; k1 ¼ k0 þ idk ð7:2Þ

mI

pI
mp II +

5

2 πψ =
 

Im

Re

0

1.0

2 4 6 8 10

21xk

Fig. 10. Normalized impedances for c > c� (c ¼ 2p=5). Key as for Fig. 8.
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and on introducing the group velocity Vg ¼ �do=dk; after some transformations [17] and after
integrating and averaging (3.5), one easily obtains

I � Vg *e ¼ 1
2 Refw� %M12g

��
x2¼0

; ð7:3Þ

where

*e ¼
o
2p

Z 2p=o

0

dt

Z þN

0

e dx2:

Thus, VgaI=*e any longer.
In fact, when averaging over a period and using complex representation for variables such as

A ¼ A�eiðotþk1x1þk2x2Þ and B ¼ B�eiðotþk1x1þk2x2Þ the final contribution into the averaged value of
product ReðAÞReðBÞ is given only by 1

2
ReðA %BÞ (do-0). This leads to the appearance of the

exponential term expf�2ðtdoþ x1dk þ x2 Im k2Þg in each product and to the replacement for the
outer derivatives by @t-� 2do; @1-� 2dk for components of e and p1: Since by virtue of the
exponential decay at the infinity and of the boundary conditions at the edge

p2 ¼ Re y�2 Re M22 þRe w� Re P2z � @1ðRe w� Re M12Þ;Z þN

0

@2p2 dx2 ¼ p2jþN

0 ¼ �p2jx2¼0¼ @1ðRe w� Re M12Þjx2¼0

and from Eq. (7.1) one obtains

�2doe � 2dkp1 þ @2p2 þ ð?Þ ¼ 0:

After integration over x2 and averaging by time the terms in the brackets disappear and one
finally arrives at Eq. (7.3).
As a result the group velocity does not coincide with the ratio of the averaged power flow over

the averaged energy density (7.3), which is the essence of Leontovich–Lighthill theorem and of the
group velocity criterion [16]. Thus, the Leontovich–Lighthill theorem does not hold with the
classical formulation for plane waves. The definition of the variable s; which depends only on the
stiffness, yields the expression for group velocity

Vg ¼ �
do
dk1

¼
2k1s

4d

rVR

;

which confirms the sign coincidence of the phase and group velocities. In the meantime it justifies
the correctness of the chosen variation (7.2) for the frequency and wave number.
In principle, the situation with a changeable sign of the average power flow is familiar for

layered structures. Even some of the classical plane Lamb’s waves in isotropic layers with stress-
free faces possess such a property [16]. However, this fact remains in accordance with the
changeable sign of the group velocity and with the Leontovich–Lighthill theorem. Cases are also
known where this theorem is inapplicable. For example, for 3-D-Lamb’s waves it does not hold
[17], but for the waves with a small front curvature (or at infinity, where in each point the front
curvature of the 3-D wave is neglected) it holds for a leading part of the energy and of the average
power flow [17]. Hence, the energy radiation principle can be formulated equally for the average
power flow and for the group velocity of waves. The case of the plane waves considered in
the present paper is different. The sign of group velocity is no longer equal to the sign of power
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flow due to the formulation of boundary conditions in Kirchhoff’s theory of thin plates. And the
sign changing of the power flow itself becomes a property of the anisotropy orientation. Notice
again that this effect cannot be realized for isotropic materials.

8. Conclusion

One concludes that bending waves of the Rayleigh type in anisotropic plates can be
qualitatively different from similar waves in isotropic plates, as well as from the classical Rayleigh
waves under plane strains or under plane stresses. These properties are caused by the bending
stiffnesses (and especially by the twist coupling stiffnesses) and by the boundary conditions in
Kirchhoff’s theory of thin plates. Consequently, in the present consideration only integral values
of the stifnesses are important and all main effects hold for the plates, made of one or more plies
(with symmetrical layup).
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